Tag Archives: Chris Kapulkin

#HoTT simplicial categories, Segal spaces and Segal categories

https://arxiv.org/abs/1503.02720 http://www.people.virginia.edu/~jeb2md/CSSFunctors.pdf Voir aussi le livre d’Emily Riehl http://www.math.jhu.edu/~eriehl/cathtpy.pdf Et les travaux d’André Joyal http://logica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/Joyal-TACL2015.pdf https://meditationesdeprimaphilosophia.wordpress.com/2017/10/22/hott-andre-joyal-la-notion-de-typos/ https://anthroposophiephilosophieetscience.wordpress.com/2018/01/22/andre-joyal-hott-simplicial-tribes/ https://meditationesdeprimaphilosophia.wordpress.com/2017/10/21/hott-andre-joyal-weak-factorisation-system/ https://anthroposophiephilosophieetscience.wordpress.com/2017/10/29/hott-andre-joyal-correspondance-des-notions-categoriques-et-de-celles-de-la-theorie-homotopique-des-types/ https://meditationesdeprimaphilosophia.wordpress.com/2017/08/31/andre-joyal-categorical-hott-2/ https://anthroposophiephilosophieetscience.wordpress.com/2017/09/13/andre-joyal-categorical-hott-3/ https://henosophiamathesis.wordpress.com/2017/10/17/hott-andre-joyal-tribes-and-fibrations/ https://nicolasdecuse.wordpress.com/2017/10/12/andre-joyal-hott-category-theory-and-homotopy-type-theory/ https://doctrinedelascience.wordpress.com/2017/10/14/andre-joyal-hott-tribus-et-⊓-tribus/ https://anthroposophiephilosophieetscience.wordpress.com/2018/01/09/hott-andre-joyal-π-tribus-et-h-tribus-tribus-de-martin-lof-et-de-voevodsky/ https://hottandphilosophy.wordpress.com/2017/11/26/andre-joyal-categorical-homotopy-type-theory-2014/ https://anthroposophiephilosophieetscience.wordpress.com/2017/10/20/hott-le-cours-dandre-joyal-en-cinq-parties-sur-les-tribus/ https://anthroposophiephilosophieetscience.wordpress.com/2017/11/26/andre-joyal-notes-on-tribes-and-clans/ https://homotopytypetheory.org/author/mikeshulman/ https://arxiv.org/abs/1703.03007 https://arxiv.org/abs/1601.05035 https://home.sandiego.edu/~shulman/papers/index.html Advertisements

Posted in ∞-catégories, ∞-cosmoi, ∞-topoi, category theory, Higher category theory, homotopy type theory, Science-internelle | Tagged , , , ,

Kapulkin : Joyal’s conjecture in #HoTT

http://d-scholarship.pitt.edu/21718/1/Kapulkin-dissertation.pdf

Posted in ∞-catégories, ∞-topoi, category theory, Higher category theory, homotopy type theory, Philosophie mathématique, Science-internelle | Tagged , ,

#Joyal #HoTT suivre les travaux de Karol Szupilo

Je me réfère à ce court article introductif de Joyal : http://logica.dmi.unisa.it/tacl/wp-content/uploads/abstracts/invited_paper_7.pdf et à son allusion à Karol Szupilo . Des travaux de ce dernier : http://eilenberg100.ptm.org.pl/sites/default/files/slides/Szumilo.pdf Cette dissertation : http://hss.ulb.uni-bonn.de/2014/3692/3692.pdf Cet article sur Arxiv de Kapulkin et Szupilo: https://arxiv.org/pdf/1709.09519.pffContinue reading

Posted in ∞-catégories, ∞-topoi, homotopy type theory | Tagged , ,