#HigherCategoryTheory catégories doubles et triples, multiples, intercatégories, polycatégories, multicatégories , PROP

Jusqu’ici nous avons croisé les catégories supérieures surtout à travers le livre de Jacob Lurie dans le hashtag #HigherToposTheory

https://anthroposophiephilosophieetscience.wordpress.com/2017/04/19/highertopostheory-un-nouveau-guide-de-lecture/

mais il existe une autre manière de concevoir la progression vers les n-catégories et les ∞-catégories, comme cet article de Paré et Grandis le précise :

https://www.mscs.dal.ca/~pare/Mlc1.pdf

La première manière, plus connue, est appelée « forme globulaire » page 1 de l’article.

La deuxième forme est plus générale et dûe à l’école de Charles Ehresmann (1905-1979) qui est associée aux « Cahiers de topologie et de géométrie différentielle catégoriques » qui est lisible en totalité sur le site Numdam ( c’est Andrée Ehresmann, veuve de Charles, qui gère la collection):

http://www.numdam.org/journals/CTGDC

https://fr.m.wikipedia.org/wiki/Charles_Ehresmann

Ce sont les catégories multiples, qui commencent avec les catégories doubles, puis triples, etc…

https://ncatlab.org/nlab/show/double+category

Une catégorie double est un objet interne à Cat, la catégorie des caégories; voir cet ancien article sur la notion très importante de catégorie interne à une autre:

https://anthroposophiephilosophieetscience.wordpress.com/2017/09/21/categories-internes-internal-category-theory/

Une catégorie « ordinaire » est une catégorie interne à la catégorie Set des ensembles.

Un théorème stipule un Interdit analogue à celui de Russell pour l’ensemble de tous les ensembles ; il ne peut exister de catégorie interne à elle même :

https://mathesismessianisme.wordpress.com/2015/05/01/une-categorie-interne-a-elle-meme/

Une catégorie triple est définie comme catégorie interne à la catégorie des caégories doubles:

https://ncatlab.org/nlab/show/triple+category

et on monte par le même principe l’échelle des catégories multiples : une catégorie multiple de rang n est interne à la catégorie des catégories multiples de rang n-1 :

https://ncatlab.org/nlab/show/n-fold+category

Une catégorie multiple de rang n est une version stricte d’une n-catégorie :

https://ncatlab.org/nlab/show/n-category

la composition des flèches est strictement associative et unitaire (la composition avec la flèche identité est commutative et laisse invariante n’importe quel morphisme), on a des égalités strictes, et non pas à un isomorphisme près .

Les intercatégories sont des catégories triples particulières :

https://ncatlab.org/nlab/show/intercategory

Une catégorie double a deux sortes de morphismes : horizontal et vertical, voir :

http://www.numdam.org/article/CTGDC_2004__45_3_193_0.pdf

C’est expliqué page 4 sur 49 paragraphe 1.1 « Basics » qui présente deux compositions, des flèches horizontales et des flèches verticales. Il y a en plus les carrés, qui peuvent être vus comme des 2-morphismes (« double celles »), qui se composent entre eux, le bord d’un carré est composé de deux flèches horizontales et deux flèches verticales , voir Page 4 la figure 1, le carré α est constitué des deux flèches verticales u et v et des deux flèches horizontales f et g et s’écrit :

f
(u v )
g
Dans une intercatégorie, il y a les objets (0-cells ) , trois sorte de morphismes (1-cells) : transversal, horizontal, vertical, trois sortes de 2-morphismes, les carrés et une sorte de 3-morphisme entre les carrés : les cubes

Un bon article sur les intercatégories est celui de Paré et Grandis , d’où sont issues les figures ci dessus :

https://arxiv.org/pdf/1412.0212.pdf

et bien sûr la page Nlab qui a déjà été donnée:

https://ncatlab.org/nlab/show/intercategory qui donne le lien vers un autre article :

https://arxiv.org/pdf/1412.0144.pdf

Citons aussi le livre de Grandis « Directed algebraic topology « 

http://www.dima.unige.it/~grandis/Bk.XXDATXX.pdf

https://ncatlab.org/nlab/show/Directed+Algebraic+Topology

Dans une multicatégorie un morphisme relis un seul objet à une collection de plusieurs objets :

https://ncatlab.org/nlab/show/multicategory

Dans une polycatégories, une liste finie de plusieurs objets peut être reliée à une autre collection de plusieurs objets :

https://ncatlab.org/nlab/show/polycategory

Advertisements
This entry was posted in ∞-catégories, category theory, Higher category theory, homotopy type theory, Science-internelle. Bookmark the permalink.